INTRODUCTION
The groin pain (GrP) is not fully understood and there are several controversial opinion on both diagnosis and treatment1,2,3,4. The term GrP refers to the description of a symptomatology, related to the pubic area, from different causes: musculoskeletal, neurological and visceral4. GrP is a widespread problem among amateur and professional athletes, and it accounts around 5-10% of injuries in clinical practice. This kind of injury can lead to a significant stop from the practiced sport, or even end the athlete’s career, due to its clinical complexity, the high number of anatomic structures involved, and the consequent difficulties during the rehabilitation treatment. In fact the multifactorial pathogenesis of the GrP, with possibly related diseases, represents a big diagnostic challenge. One of the most rational GrP classifications is proposed by Weir A. et al. (2018)5. The main mechanisms related to the onset of GrP have been listed by Serner A. et al. (2018)2, dividing them into open and closed kinetic chain mechanisms. Waldén M. et. al (2015)6, found a higher incidence rate of 12.8% in males, compared to the 6.9% of the females. Engebretsen A. H. et al. (2010)7, describe the presence of certain risk conditions that increase the probability of GrP such as muscle weakness, reduced external hip rotation, intensity of exercise etc. Adductor-related groin pain accounts for 58% of injuries in all sports and 69% of injuries to the groin in footballers according to Hölmich P. et al, (2007)8. The aim of this study was to verify, through a narrative review of the literature, the role of the Active Training programme (AT) and Multi Modal Treatment program (MMT) in the conservative treatment of GrP.

MATERIALS AND METHODS
The research was carried out by a single operator through a review of the literature of the last 25 years in databases such as Medline, Pubmed and PEDro. Only RCTs with a minimum score of 5/10 in the PEDro Scale were included. The research started in March 2021 and ended in May 2021. Results: 75 scientific articles were obtained from an initial research. After removing duplicates and reading title and abstracts, 4 studies were selected and reviewed. The first study aims to test the effectiveness of TA compared to passive treatment. In the second and third AT is compared with MTM. The fourth study looked at the long-term effectiveness of TA. Conclusion: According to...
al. (2011) evaluate the long-term effects of the AT program proposed by Hölmich P. (1999), and for the first time was noticed that an AT treatment for GrP has a long-term effect (8-12 years), while Weir A. et al. (2011) verified that a MMT program is a safe and effective treatment like an AT program. Schöberl M. et al. (2017) proved that a standardized MMT program has positive effects on pain reduction and possible relapses.

DISCUSSION

During the research process, interesting ideas on conservative treatment emerged. In fact, there is moderate evidence regarding the efficacy of an AT treatment both in terms of painful symptoms, subjective feeling of the patient and reintegration into specific sport maintaining good results in the long term, compared to an MMT treatment which, however, has a greater effect on reducing viscoelastic muscular stiffness of adductors, reducing the insertion load. In addition, MMT makes use of physical therapy such as laser, Transcutaneous electrical nerve stimulation (TENS) and wave therapy representing a non-invasive focal treatment option to reduce inflammation and pain in the symphysis, evidenced a satisfactory return to sport, but which in the long term seems to be less effective. From the literature in our possession conservative treatment seems to have a good success in the treatment of GrP even better if carried out in an integrated way with more therapeutic methods such as AT and MMT, preceded by a timely and correct early diagnosis.

<table>
<thead>
<tr>
<th>STUDY</th>
<th>GOALS</th>
<th>METHODS</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmich P. et al. 1999</td>
<td>Check the effectiveness of active physical training compared to passive physiotherapy treatment.</td>
<td>Group AT = Active treatment, 34 athletes. Exercise program carried out in group 3 times a week. PT = Passive treatment group, 34 athletes. Physical therapy, manual therapy, stretching.</td>
<td>In the AT group, in 25/34 athletes the result was excellent or good, against the 10/34 of the PT group. 79% of the AT group returned to sport at the previous level, compared with 14% of the PT group.</td>
</tr>
<tr>
<td>Holmich P. et al. 2011</td>
<td>Check the long-term effectiveness of the programme proposed in 1999.</td>
<td>Follow-up of 8-12 years of 47/59 athletes participating in the study of 1999.</td>
<td>The result was excellent in 50% of the AT group and 22% of the PT group.</td>
</tr>
<tr>
<td>Weir A. et al. 2011</td>
<td>Compare the effectiveness of multi-modal treatment with the programme proposed by Holmich in 1999.</td>
<td>Group ET = Exercise therapy, 25 athletes. Exercise program proposed by Holmich in ’99 to be carried out at home. Group MMT = multi-modal treatment, 29 athletes. Heat therapy, Van Den Akker manual therapy, stretching. Both protocols are followed by a back-to-run program.</td>
<td>In the MMT group, 50% of athletes returned to their previous levels with a faster time frame (12.8 weeks) than in the ET group (55% of athletes; 17.3 weeks).</td>
</tr>
<tr>
<td>Schöberl M. et al. 2017</td>
<td>Compare the differences in efficacy between treatment with exercise, treatment with exercise and no treatment.</td>
<td>Group 1 = Exercise programme + shock waves; 26 athletes. Group 2 = Exercise programme (as group 1) without shock waves; 18 athletes. Group 3 = control group, no treatment; 51 athletes.</td>
<td>In Group 1 the mean time to return to sport was 72.2 days, compared to 102.6 days in Group 2. In the control group, however, the average time was 240 days. In addition, 26 out of 51 athletes in the control group experienced relapses, while none of the study groups experienced relapses.</td>
</tr>
</tbody>
</table>

Tab. 1 – Included articles

List of abbreviations: Active Treatment (AT), Passive Treatment (PT), Exercise Therapy (ET), Multi Modal Treatment (MT).

![Fig. 1 - Flow Chart of bibliographic research](image-url)
CONCLUSIONS
The treatment of GrP is multifactorial and therefore requires an appropriate management. According to the studies analysed, the integration of different conservative treatment approaches such as AT and MMT is the best option. Despite these considerations, it should be stressed that the study has some obvious limitations. First of all, the lack of a gold standard that allows to extrapolate a good degree of accuracy in the therapeutic management of conservative GrP, as well as the small number of available literature on this subject. This leads to caution in transferring the evidence reported to the rehabilitation clinic and further analysis of the effectiveness of a GrP treatment plan is desirable. Future research is essential to construct high quality studies to have a greater methodological rigour in this field, thus laying the common ground for the construction of guidelines and good clinical care practices in line with what is the profession of physiotherapist, in light of the new regulations Law no. 24 of 8 March 2017(1) and to the establishment of the health professional associations with Law no. 3 of 11 January 2018(2).

Acknowledgements
The authors would like to thank to Dimitri Natoli for the translation of this paper.

Notes

REFERENCES